skip to main content


Search for: All records

Creators/Authors contains: "Dragan, Anca D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Real-world robotic tasks require complex reward functions. When we define the problem the robot needs to solve, we pretend that a designer specifies this complex reward exactly, and it is set in stone from then on. In practice, however, reward design is an iterative process: the designer chooses a reward, eventually encounters an "edge-case" environment where the reward incentivizes the wrong behavior, revises the reward, and repeats. What would it mean to rethink robotics problems to formally account for this iterative nature of reward design? We propose that the robot not take the specified reward for granted, but rather have uncertainty about it, and account for the future design iterations as future evidence. We contribute an Assisted Reward Design method that speeds up the design process by anticipating and influencing this future evidence: rather than letting the designer eventually encounter failure cases and revise the reward then, the method actively exposes the designer to such environments during the development phase. We test this method in a simplified autonomous driving task and find that it more quickly improves the car's behavior in held-out environments by proposing environments that are "edge cases" for the current reward. 
    more » « less
  2. null (Ed.)
  3. When a robot performs a task next to a human, physical interaction is inevitable: the human might push, pull, twist, or guide the robot. The state of the art treats these interactions as disturbances that the robot should reject or avoid. At best, these robots respond safely while the human interacts; but after the human lets go, these robots simply return to their original behavior. We recognize that physical human–robot interaction (pHRI) is often intentional: the human intervenes on purpose because the robot is not doing the task correctly. In this article, we argue that when pHRI is intentional it is also informative: the robot can leverage interactions to learn how it should complete the rest of its current task even after the person lets go. We formalize pHRI as a dynamical system, where the human has in mind an objective function they want the robot to optimize, but the robot does not get direct access to the parameters of this objective: they are internal to the human. Within our proposed framework human interactions become observations about the true objective. We introduce approximations to learn from and respond to pHRI in real-time. We recognize that not all human corrections are perfect: often users interact with the robot noisily, and so we improve the efficiency of robot learning from pHRI by reducing unintended learning. Finally, we conduct simulations and user studies on a robotic manipulator to compare our proposed approach with the state of the art. Our results indicate that learning from pHRI leads to better task performance and improved human satisfaction.

     
    more » « less